Welcome To WUJNS
武汉大学学报 英文版 | Wuhan University Journal of Natural Sciences
Wan Fang
Wuhan University
Latest Article
Quad-Level Cell NAND Design and Soft-Bit Generation for Low-Density Parity-Check Decoding in System-Level Application
LIU Shijun, ZOU Xuecheng, WANG Baocun
School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
 QLC (Quad-Level Cell) NAND flash will be one of the future technologies for next generation memory chip after three-dimensional (3D) TLC (Triple-Level Cell) stacked NAND flash. In QLC device, data errors will easily occur because of 24 data levels in the limited voltage range. This paper studies QLC NAND technology which is 4 bits per cell. QLC programming methods based on 16 voltage levels and reading method based on “half-change” Gray coding are researched. Because of the probable error impact of QLC NAND cell’s voltage change, the solution of generating the soft information after XOR (exclusive OR) the soft bits by internal read mechanism is presented for Low-Density Parity-Check (LDPC) Belief Propagation (BP) decoding in QLC design for its system level application.
Key words:QLC (Quad-Level Cell) NAND; error-correcting code (ECC); Low-Density Parity-Check (LDPC); Soft-Bit Generation
CLC number:TN 492
[1]	Park K, Nam S, Kim D, et al. Three-dimensional 128 Gb MLC vertical NAND flash memory with 24-WL stacked layers and 50 MB/s high-speed programming [J]. IEEE Journal of Solid-State Circuits, 2015, 50 (1): 204-213.
[2]	Kang D, Jeong W, Kim C, et al. 256 Gb 3 b/cell V-NAND flash memory with 48 stacked WL layers [C]// IEEE Inter-national Solid-State Circuits Conference. New York: IEEE, 2016: 130-132.
[3]	Aritome S. NAND Flash memory revolution [C]// IEEE 8th International Memory Workshop. New York: IEEE, 2016: 1- 4.
[4]	Lai S. Non-volatile memory technologies: The quest for ever lower cost [C]// IEEE International Electron Devices Meet-ing. New York: IEEE, 2008: 1-6.
[5]	Lim J Y, Moon P, Lee S M, et al. Analysis of intrinsic charge loss mechanisms for nanoscale NAND flash memory [J]. IEEE Transactions on Device and Materials Reliability, 2015, 15(3): 319-325.
[6]	Sandhya C, Oak A B, Chattar N, et al. Study of P/E cycling endurance induced degradation in SANOS memories under NAND (FN/FN) operation [J]. IEEE Transactions on Elec-tron Devices, 2010, 57(7): 1548-1558.
[7]	Chang Y M, Li Y C, Chang Y H, et al. On relaxing page program disturbance over 3D MLC flash memory [C]// IEEE/ACM International Conference on Computer-Aided Design. New York: IEEE, 2015: 479-486.
[8]	Kobayashi A, Watanabe H, Sakaki Y, et al. Investigation of read disturb error in 1Ynm NAND flash memories for sys-tem level solution [C]// IEEE International Reliability Physics Symposium. New York: IEEE, 2017: 1-4.
[9]	Deguchi Y, Tokutomi T, Takeuchi K. System-level error correction by read-disturb error model of 1Xnm TLC NAND flash memory for read-intensive enterprise solid-state drives (SSDs) [C]// IEEE International Reliability Physics Symposium. New York: IEEE, 2016: 1-4.
[10]	Cho S, Kim D, Choi J, et al. Block-wise concatenated BCH codes for NAND flash memories [J]. IEEE Transactions on Communications, 2014, 62(4): 1164-1177.
[11]	Gallager R. Low-density parity-check codes [J]. IRE Trans-action on Information Theory, 1962, 8(1): 21-28.
[12]	Kim J H, Sung W Y. Rate-0.96 LDPC decoding VLSI for soft-decision error correction of NAND flash memory [J]. IEEE Transactions on Very Large Scale Integration System, 2014, 22(5): 1004-1015.
[13]	Kumara Y, Wavegedara C B. Improved LDPC decoding algorithms based on min-sum algorithm [C] // Moratuwa Engineering Research Conference. New York: IEEE, 2016: 108-113.
[14]	Howard S L, Gaudet V C, Schlegel C. Soft-bit decoding of regular low-density parity-check codes [J]. IEEE Transac-tions on Circuits and Systems, 2005, 52(10): 646-650.
[15]	Bez R, Camerlenghi E, Modelli A, et al. Introduction to flash memory [J]. Proceedings of the IEEE, 2003, 91(4): 489-502.
[16]	Jang J, Kim H S, Cho W, et al. Vertical cell array using TCAT (terabit cell array transistor) technology for ultrahigh density NAND flash memory [C]// IEEE Symposium on VLSI Technology. New York: IEEE, 2009: 192-193.
[17]	Lue H T, Hsu T H, Wang S Y, et al. Study of incremental step pulse programming (ISPP) and STI edge effect of BE-SONOS NAND flash [C]// IEEE 46th Annual Interna-tional Reliability Physics Symposium. New York: IEEE, 2008: 693-694.
[18]	Arreghini A, Driussi F, Esseni D, et al. Experimental extraction of the charge centroid and of the charge type in the P/E operations of the SONOS memory cells [C]// International Electron Devices Meeting. New York: IEEE, 2006: 1-4.
[19]	Park H, Bersuker G, Gilmer D, et al. Charge loss in TANOS devices caused by Vt sensing measurements during reten-tion  [C]// IEEE International Memory Workshop. New York: IEEE, 2010: 1-2.
[20]	Kim J H, Cho J, Sung W Y. Error performance and decoder hardware comparison between EG-LDPC and BCH codes [C]// IEEE Workshop on Signal Processing Systems. New York: IEEE, 2010: 392-397.
[21]	Jose R, Pe A. Analysis of hard decision and soft decision decoding algorithms of LDPC codes in AWGN [C]// IEEE International Advance Computing Conference. New York: IEEE, 2015: 430-435.
Welcome To WUJNS

HOME | Aim and Scope | Editoral Board | Current Issue | Back Issue | Subscribe | Crosscheck | Polishing | Contact us Copyright © 1997-2018 All right reserved