Welcome To WUJNS
武汉大学学报 英文版 | Wuhan University Journal of Natural Sciences
Wan Fang
Wuhan University
Latest Article
Topological Disk Mesh Morphing Based on Area-Preserving Parameterization
CHEN Cailing, SU Kehua, ZHU Xinyan
1. School of Computer, Wuhan University, Wuhan 430072, Hubei, China; 2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, Hubei, China
Mesh morphing is a technique which gradually deforms a mesh into another one. Mesh parameterization, a powerful tool adopted to establish the one-to-one correspondence map between different meshes, is of great importance in 3D mesh morphing. However, current parameterization methods used in mesh morphing induce large area distortion, resulting in geometric information loss. In this paper, we propose a new morphing approach for topological disk meshes based on area-preserving parameterization. Conformal mapping and Möbius transformation are computed firstly as rough alignment. Then area preserving parameterization is computed via the discrete optimal mass transport map. Features are exactly aligned through radial basis functions. A surface remeshing scheme via Delaunay refinement algorithm is developed to create a new mesh connectivity. Experimental results demonstrate that the proposed method performs well and generates high-quality morphs.
Key words:mesh morphing; area preserving parameterization; Möbius transformation; radial basis functions
CLC number:TP 391.41
[1]	Alexa M. Recent advances in mesh morphing[J]. Computer Graphics Forum, 2002, 21(2): 173-198.
[2]	Zhang L, Liu L, Ji Z, et al. Manifold Parameterization[M]. Berlin: Springer-Verlag, 2006: 160-171.
[3]	Yeh I, Lin C, Sorkine O, et al. Template-based 3d model fitting using dual-domain relaxation[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(8): 1178-1190.
[4]	Wu H, Pan C, Zha H, et al. Partwise cross-parameterization via nonregular convex hull domains[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(10): 1531-1544.
[5]	Sumner R W, Popovic C J. Deformation transfer for triangle meshes[J]. ACM Transactions on Graphics (TOG), 2004, 23(3): 399-405.
[6]	Kanai T, Suzuki H, Kimura F. Three-dimensional geometric metamorphosis based on harmonic maps[J]. The Visual Computer, 1998, 14(4): 166-176.
[7]	Lee A W, Sweldens W, Schröder P, et al. MAPS: Multiresolution adaptive parameterization of surfaces[C] //Pro of the 25th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1998: 95-104.
[8]	Lin C, Lee T. Metamorphosis of 3d polyhedral models using progressive connectivity transformations[J]. IEEE Transac-tions on Visualization and Computer Graphics, 2005, 11(1): 2-12.
[9]	Lin C, Lee T, Chu H, et al. Progressive mesh metamorpho-sis[J]. Computer Animation and Virtual Worlds, 2005, 16(3- 4): 487-498.
[10]	Mocanu B, Zaharia T. A complete framework for 3D mesh morphing[C] //Proceedings of the 11th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry. New York: ACM Press, 2012: 161-170.
[11]	Peng C, Timalsena S. Fast mapping and morphing for ge-nus-zero meshes with cross spherical parameterization[J]. Computers and Graphics, 2016, 59: 107-118.
[12]	Gregory A, State A, Lin M C, et al. Interactive surface decomposition for polyhedral morphing[J]. The Visual Computer, 1999, 15(9): 453-470.
[13]	Kraevoy V, Sheffer A. Cross-parameterization and compatible remeshing of 3D models[J]. ACM Transactions on Graphics (TOG), 2004, 23(3): 861-869.
[14]	Garner C, Jin M, Gu X, et al. Topology-driven surface mappings with robust feature alignment[C] //Vis 05 IEEE Visualization. Washington D C: IEEE, 2005: 543-550 .
[15]	Litke N, Droske M, Rumpf M, et al. An image processing approach to surface matching[C] //Symposium on Geometry Processing. Washington D C:IEEE, 2005: 207-216.
[16]	Yueh M, Gu X D, Lin W, et al. Conformal surface morphing with applications on facial expressions[J/OL]. CoRR, arX-ivpreprint arXiv:1504.00097. 2015. http://dblp.org/rec/bib/ journals/corr/YuehGLWY15.
[17]	Sheffer A, Praun E, Rose K, et al. Mesh parameterization methods and their applications[J]. Foundations and Trends in Computer Graphics and Vision, 2007, 2(2): 105-171.
[18]	Praun E, Hoppe H. Spherical parametrization and remesh-ing[J]. ACM Transactions on Graphics (TOG), 2003, 22(3): 340-349.
[19]	Mocanu B, Zaharia T. Direct spherical parameterization of 3D triangular meshes using local flattening operations [C]// Advances in Visual Computing. Berlin: Springer-Verlag, 2011: 607-618.
[20]	Hu K, Yan D, Bommes D, et al. Error-bounded and feature preserving surface remeshing with minimal angle improve-ment [J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(12):2560-2573.
[21]	Yang Y L, Guo R, Luo F, et al. Generalized discrete Ricci flow[J]. Computer Graphics Forum, 2009, 28(7): 2005-2014.
[22]	Zou G, Hu J, Gu X, et al. Authalic parameterization of general surfaces using lie advection [J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 17(12): 2005- 2014.
[23]	Yoshizawa S, Belyaev A, Seidel H P. A fast and simple stretch-minimizing mesh parameterization [C] //Shape Modeling Applications Proceedings. Washington D C: IEEE, 2004: 200-208.
[24]	Monge G. Memoire sur la theorie des deblais et des remblais[J]. Histoire de lAcademie Royale des Sciences de Paris, avec les Memoires de Mathematiqueet de Physique pour la meme annee, 1781: 666-704.
[25]	Kantorovich L V E. On a problem of Monge[J]. Uspekhi Mat Nauk, 1948, 3: 225-226.
[26]	Brenier Y. Polar factorization and monotone rearrangement of vector-valued functions[J]. Communications on Pure & Applied Mathematics, 1991, 44(4): 375-417.
[27]	Alexadrov A D. Convex Polyhedral [M]. Berlin: Springer- Verlag, 2005.
[28]	Aurenhammer F. Power diagrams: Properties, algorithms and applications[J]. Siam Journal on Computing, 1987, 16(1): 78- 96.
[29]	Gu X, Luo F, Sun J, et al. Variational principles for Min-kowski type problems, discrete optimal transport, and dis-crete Monge-Ampere equations[J]. Asian Journal of Mathematics, 2016, 20(2): 383-398.
[30]	Su K, Cui L, Qian K, et al. Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation[J]. Computer Aided Geometric Design, 2016, 46: 76-91.
[31]	Sieger D, Menzel S, Botsch M. RBF morphing techniques for simulation-based design optimization[J]. Engineering with Computers, 2014, 30(2): 161-174.
[32]	Shewchuk J R. Delaunay refinement algorithms for triangular mesh generation[J]. Computational Geometry, 2002, 22(1): 21-74.
[33]	Solomon J, De Goes F, Peyre G, et al. Convolutional Was-serstein distances: Efficient optimal transportation on geo-metric domains[J]. ACM Transactions on Graphics (TOG), 2015, 34(4): 66.
Welcome To WUJNS

HOME | Aim and Scope | Editoral Board | Current Issue | Back Issue | Subscribe | Crosscheck | Polishing | Contact us Copyright © 1997-2019 All right reserved