Welcome To WUJNS
武汉大学学报 英文版 | Wuhan University Journal of Natural Sciences
Wan Fang
Wuhan University
Latest Article
Mg2+-Triggered and pH-Tuned in vitro Assembly of Trehalose-6-Phosphate Synthase
ZHANG Shanshan, YANG Fan, ZHANG Yuping, LIU Zaiman, YU Linghui, CHEN Ximing, XIAO Jianxi
1. College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China; 2. School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China; 3. School of Stomatology, Lanzhou University, Lanzhou 730000, Gansu, China; 4. Key Laboratory of Desert & Desertification, Cold & Arid Regions Environmental & Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
The enzyme OtsA (trehalose-P synthase) plays a critical role in the biosynthesis of trehalose, which is a nonreducing disac-charide that plays important functions in many organisms. By using light scattering technique, we discovered that OtsA in Arthrobacter strain A3 polymerized in the presence of divalent metal ions (Mg2+ or Ca2+), and the kinetics of the assembly was dependent on their concentrations. We identified potential compounds that can affect the kinetics of the polymerization, particularly, heparin, which acts as a very promising inhibitor of the polymerization. The OtsA assembly turns out to be a very delicate process that is finely regulated by pH. OtsA may be in the polymerized form at physiological pH in vivo, suggesting a more complicated mechanism of the enzyme. These unique properties of OtsA provide novel insights into the molecular mechanism of the biosynthesis of trehalose.
Key words:OtsA(trehalose-P synthase); trehalose; polymerization; light scattering
CLC number: O 657.93
[1]	Nobre A, Alarico S, Maranha A, et al. The molecular biology of mycobacterial trehalose in the quest for advanced tuberculosis therapies [J]. Microbiology, 2014, 160(8): 1547-1570.
[2]	Pan Y T, Koroth Edavana V, Jourdian W J, et al. Trehalose synthase of mycobacterium smegmatis: Purification, cloning, expression, and properties of the enzyme [J]. Eur J Biochem, 2004, 271(21): 4259-4269.
[3]	Elbein A D, Pan Y T, Pastuszak I, et al. New insights on trehalose: A multifunctional molecule[J]. Glycobiology, 2003, 13(4): 17-27.
[4]	Nwaka S, Holzer H. Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae[J]. Prog Nucleic Acid Res Mol Biol, 1998, 58:197-237.
[5]	Lunn J E, Delorge I, Figueroa C M, et al. Trehalose metabolism in plants[J]. Plant Journal for Cell & Molecular Biology, 2014, 79(4): 544-567.
[6]	Becker A, Schloder P, Steele J E, et al. The regulation of trehalose metabolism in insects[J]. Experientia, 1996, 52(5): 433-439.
[7]	Figueroa C M, Feil R, Ishihara H, et al. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability[J]. Plant Journal for Cell & Molecular Biology, 2016, 85(3): 410-423.
[8]	Ruhal R, Kataria R, Choudhury B. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation[J]. Microb Biotechnol, 2013, 6(5): 493-502.
[9]	Brennan P J, Nikaido H. The envelope of mycobacteria[J]. Annu Rev Biochem, 1995, 64(64): 29-63.
[10]	Doehlemann G, Berndt P, Hahn M. Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea[J]. Microbiology, 2006, 152(9): 2625-2634.
[11]	Novo M T, Beltran G, Rozes N, et al. Effect of nitrogen limitation and surplus upon trehalose metabolism in wine yeast[J]. Appl Microbiol Biotechnol, 2005, 66(5): 560-566.
[12]	Jagdale G B, Grewal P S, Salminen S O. Both heat-shock and cold-shock influence trehalose metabolism in an entomop- athogenic nematode [J]. J Parasitol, 2005, 91(5): 988-994.
[13]	Kaasen I, McDougall J, Strøm A R. Analysis of the OtsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex[J]. Gene, 1994, 145(1): 9-15.
[14]	Klein W, Ehmann U, Boos W. The repression of trehalose transport and metabolism in Escherichia coli by high osmolarity is mediated by trehalose-6-phosphate phosph- atase[J]. Research in Microbiology, 1991, 142(4): 359-371.
[15]	Paul M J, Primavesi L F, Jhurreea D, et al. Trehalose metabolism and signaling[J]. Annu Rev Plant Biol, 2008, 59: 417-441.
[16]	Avonce N, Leyman B, Thevelein J, et al. Trehalose metabolism and glucose sensing in plants[J]. Biochem Soc Trans, 2005, 33(1): 276-279.
[17]	Ramon M, Rolland F. Plant development: Introducing trehalose metabolism [J]. Trends Plant Sci, 2007, 12(5): 185- 188.
[18]	Yan J, Qiao Y, Hu J, et al. Cloning, expression and charact- erization of a trehalose synthase gene from Rhodococcus opacus[J]. Protein J, 2013, 32(3): 223-229.
[19]	Mu M, Lu X K, Wang J J, et al. Genome-wide identification and analysis of the stress-resistance function of the TPS (trehalose-6-phosphate synthase) gene family in cotton[J]. BMC Genet, 2016, 17: 54.
[20]	Fraenkel D, Nielsen J. Trehalose-6-phosphate synthase and stabilization of yeast glycolysis [J]. FEMS Yeast Res, 2016, 16(1): fov100.
[21]	Kalscheuer R, Koliwer-Brandl H. Genetics of mycobacterial Trehalose Metabolism[J]. Microbiol Spectr, 2014, 2(3): MGM2-0002-2013
[22]	Chen X M, Jiang Y, Li Y T, et al. Regulation of expression of trehalose-6-phosphate synthase during cold shock in Arthrobacter strain A3[J]. Extremophiles, 2011, 15(4): 499- 508.
[23]	White-Ziegler C A, Um S, Perez N M, et al. Low temperature (23℃) increases expression of biofilm-, cold- shock- and RpoS-dependent genes in Escherichia coli K-12[J]. Microbiology, 2008, 154(Pt 1): 148-166.
[24]	Cytryn E J, Sangurdekar D P, Streeter J G, et al. Transcri- ptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress[J]. J Bacteriol, 2007, 189(19): 6751-6762.
[25]	Park H C, Bae Y U, Cho S D, et al. Toluene-induced accumulation of trehalose by Pseudomonas sp. BCNU 106 through the expression of OtsA and OtsB homologues[J]. Lett Appl Microbiol, 2007, 44(1): 50-55.
[26]	Caner S, Nguyen N, Aguda A, et al. The structure of the Mycobacterium smegmatis trehalose synthase reveals an unusual active site configuration and acarbose-binding mode [J]. Glycobiology, 2013, 23(9): 1075-1083.
[27]	Kern C, Wolf C, Bender F, et al. Trehalose-6-phosphate synthase from the cat flea Ctenocephalides felis and Drosophila melanogaster: Gene identification, cloning, heterologous functional expression and identification of inhibitors by high throughput screening[J]. Insect Mol Biol, 2012, 21(4): 456-471.
[28]	Zhang R, Pan Y T, He S, et al. Mechanistic analysis of trehalose synthase from Mycobacterium smegmatis[J]. J Biol Chem, 2011, 286(41): 35601-35609.
[29]	Gibson R P, Turkenburg J P, Charnock S J, et al. Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA[J]. Chemistry & Biology, 2002, 9(12): 1337-1346.
[30]	Deng Y, Wang X, Guo H, et al. A trehalose-6-phosphate synthase gene from Saccharina japonica(Laminariales, Phaeophyceae) [J]. Mol Biol Rep, 2014, 41(1): 529-536.
[31]	Thevelein J M. The RAS-adenylate cyclase pathway and cell cycle control in Saccharomyces cerevisiae[J]. Antonie Van Leeuwenhoek, 1992, 62(1-2): 109-130.
[32]	Blázquez M A, Lagunas R, Gancedo C, et al. Trehalose- 6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases[J]. FEBS Letters, 1993, 329(1-2): 51-54.
[33]	Kolbe A, Tiessen A, Schluepmann H, et al. Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase[J]. Proc Natl Acad Sci USA, 2005, 102(31): 11118-11123.
[34]	Hou S, Wieczorek S A, Kaminski T S, et al. Characterization of Caulobacter crescentus FtsZ protein using dynamic light scattering[J]. J Biol Chem, 2012, 287(28): 23878-23886.
[35]	White E L, Ross L J, Reynolds R C, et al. Slow polymeri- zation of Mycobacterium tuberculosis FtsZ[J]. J Bacteriol, 2000, 182(14): 4028-4034.
[36]	Monterroso B, Alfonso C, Zorrilla S, et al. Combined analytical ultracentrifugation, light scattering and fluore- scence spectroscopy studies on the functional associations of the bacterial division FtsZ protein[J]. Methods, 2013, 59(3): 349-362.
[37]	Tatkiewicz W, Elizondo E, Moreno E, et al. Methods for characterization of protein aggregates[J]. Methods Mol Biol, 2015, 1258:387-401.
[38]	Megharaj M, Avudainayagam S, Naidu R. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste [J]. Curr Microbiol, 2003, 47(1): 51-54.
[39]	Kiessling J, Kruse S, Rensing S A, et al. Visualization of a cytoskeleton-like FtsZ network in chloroplasts[J]. J Cell Biol, 2000, 151(4): 945-950.
[40]	Sun H, Gao T, Chen X, et al. Complete genome sequence of a psychotrophic Arthrobacter strain A3 (CGMCC 1.8987), a novel long-chain hydrocarbons producer[J]. J Biotechnol, 2016, 222: 23-24.
[41]	Castelli R, Porro F, Tarsia P. The heparins and cancer: Review of clinical trials and biological properties[J]. Vasc Med, 2004, 9(3): 205-213.
[42]	Nader H B, Chavante S F, dos-Santos E A, et al. Heparan sulfates and heparins: Similar compounds performing the same functions in vertebrates and invertebrates?[J]. Braz J Med Biol Res, 1999, 32(5): 529-538.
[43]	Mukherjee A, Lutkenhaus J. Analysis of FtsZ assembly by light scattering and determination of the role of divalent metal cations[J]. J Bacteriol, 1999, 181(3): 823-832.
Welcome To WUJNS

HOME | Aim and Scope | Editoral Board | Current Issue | Back Issue | Subscribe | Crosscheck | Polishing | Contact us Copyright © 1997-2018 All right reserved