Welcome To WUJNS
武汉大学学报 英文版 | Wuhan University Journal of Natural Sciences
Wan Fang
Wuhan University
Latest Article
The Reverse Petty Projection Inequality
LIN Youjiang
School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China
It is proved that if K is an origin-symmetric convex body in R2 and Π*K is the polar projection body of K, then the volumes of K and Π*K satisfy the inequality V(K)V(Π*K) ⩾ 2 with equality if K is a parallelogram.
Key words:convex body; polar body; projection body; the reverse Petty projection inequality
CLC number:O 178; O 18
[1]	Bolker E D. A class of convex bodies [J]. Trans Amer Math Soc, 1969, 145: 323-345.
[2]	Bourgain J, Lindenstrauss J. Projection Bodies, Geometric Aspects of Functional Analysis Springer Lecture Notes in Math[M]. New York: Springer-Verlag, 1988. 
[3]	Gardner R J. Geometric Tomography [M]. Cambridge: Cam-bridge University Press, 2006.
[4]	Goodey P R, Weil W. Zonoids and Generalizations, Hand-book of Convex Geometry [M]. Amsterdam: North- Holland, 1993.
[5]	Leichtwei B H. Affine Geometry of Convex Bodies [M].  Heidelberg: Springer-Verlag, 1998.
[6]	Petty C M. Projection bodies [J]. Kbenhavns Univ Mat Inst, 1967, 1: 234-241.
[7]	Schneider R. Convex Bodies: The Brunn-Minkowski Theory [M]. Second Ed. Cambridge: Cambridge University Press, 2014.
[8]	Schneider R, Weil W. Zonoids and Related Topics, Convexity and Its Applications [M]. Basel: Birkhauser, 1983.
[9]	Ball K. Volume ratios and a reverse isoperimetric inequality [J]. J London Math Soc, 1991, 44: 351-359.
[10]	Zhang G Y. Restricted chord projection and affine inequalities [J]. Geom Dedicata, 1991, 39: 213-222.
[11]	Gardner R J, Zhang G Y. Affine inequalities and radial mean bodies [J]. Amer J Math, 1998, 120: 505- 528.
[12]	Du C M, Guo L J, Leng G S. Volume inequalities for Orlicz mean bodies [J]. Proc Indian Acad Sci Math Sci, 2015, 125: 57-70.
[13]	Du C M, Leng G S, Xi D M. Volume inequalities for Orlicz mean zonoids [J]. Math Inequal App, 2014, 17: 1529-1541.
[14]	Wang W D. On extensions of the Zhang’s projection ine-quality [J]. Adv Appl Math Sci, 2010, 2: 199-207.
[15]	Wang W D, Zhang T. Inequalities for dual quermassintegrals of the redial pth mean bodies [J]. J Inequal Appl, 2014, 1: 252-262.
[16]	Zhou Y P, He B W. On LYZ’s conjecture for the U-functional [J]. Adv in Appl Math, 2017, 87: 43-57.
[17]	Lin Y J, Leng G S. Convex bodies with minimal volume product in  —A new proof [J]. Discrete Math, 2010, 310: 3018-3025.
Welcome To WUJNS

HOME | Aim and Scope | Editoral Board | Current Issue | Back Issue | Subscribe | Crosscheck | Polishing | Contact us Copyright © 1997-2020 All right reserved