Welcome To WUJNS
武汉大学学报 英文版 | Wuhan University Journal of Natural Sciences
Wan Fang
CNKI
CSCD
Wuhan University
Latest Article
Study on Defects in Fe-Doped SrTiO3 by Positron Annihilation Lifetime Spectroscopy
Time:2019-9-17  
JIN Yuanyuan, LI Xiaodong, HAO Yao, LI Jingjing, WANG Zhu†
Key Laboratory of Nuclear Solid State Physics Hubei Province / School of Physics and Technology, Wuhan University, Wuhan 430072, Hubei, China
Abstract:
SrTi1-xFexO3-d ceramics were prepared using a traditional solid-state reaction method. From X-ray diffraction (XRD) result, we found that the doped Fe3+ dissolved in the lattice, and no secondary phase was observed. Cation vacancies in perovskite oxides were identified via positron annihilation lifetime spectroscopy (PALS) measurements. Undoped and Fe-doped SrTiO3 ceramics and single-crystal SrTiO3 were measured by PALS at room temperature. The results show that the main defects in undoped SrTiO3 ceramics are Ti-related defects, and the isolated Ti vacancy lifetime is about 183.4 ps. With the increase of Fe3+, the concentration of the Ti vacancies decreases accompanied by the appearance of the   (defect association of Sr vacancies and multiple O vacancies) vacancy defect complexes.
Key words:defect; positron annihilation lifetime spectroscopy (PALS); SrTiO3; vacancy
CLC number:O57
References:
[1]	Ghosh V J, Nielsen B, Friessnegg T. Identifying open-volume defects in doped and undoped perovskite-type LaCoO3, PbTiO3, and BaTiO3 [J]. Physical Review B, 2000, 61(1): 207-212.
[2]	George A M, ÍIguez J, Bellaiche L. Anomalous properties in ferroelectrics induced by atomic ordering [J]. Nature, 2001, 413(6851): 54-57.
[3]	Noll F, Münch W, Denk I, et al. SrTiO3, as a prototype of a mixed conductor conductivities, oxygen diffusion and boundary effects [J]. Solid State Ionics, Diffusion & Reactions, 1996, 86-88(part-P2): 711-717.
[4]	Choi G M, Tuller H L. ChemInform Abstract: Defect struc-ture and electrical properties of single-crystal Ba0.03Sr0.97 TiO3 [J]. Journal of the American Ceramic Society, 2010, 71(4): 201-205.
[5]	Merkle R, Maier J. Oxygen incorporation into Fe-doped SrTiO3: Mechanistic interpretation of the surface reaction [J]. Physical Chemistry Chemical Physics, 2002, 4(17): 4140- 4148.
[6]	Ohtomo A, Hwang H Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface [J]. Nature, 2004, 441(6973): 423-426.
[7]	Qin M, Gao F, Cizek J, et al. Point defect structure of La-doped SrTiO3 ceramics with colossal permittivity [J]. Acta Materialia, 2019, 164: 76-89
[8]	Tarun M C, Selim F A, Mccluskey M D. Persistent photo-conductivity in bulk strontium titanate [J]. Physical Review Letters, 2013, 111(18): 187403.
[9]	Gomann K, Bochardt G, Schulz M, et al. Sr diffusion in undoped and La-doped SrTiO3 single crystals under oxidizing conditions [J]. Physical Chemistry Chemical Physics, 2005, 7(9): 2053-2060.
[10]	René Meyer, Waser R, Helmbold J, et al. Observation of vacancy defect migration in the cation sublattice of complex oxides by 18O tracer experiments [J]. Physical Review Letters, 2003, 90(10): 105901.
[11]	Leipner H S, Hübner C G, Staab T E M, et al. Positron anni-hilation at dislocations and related point defects in semicon-ductors [J]. Physica Status Solidi, 1999, 171(1): 377-382.
[12]	Jia C L, Urban K. Atomic-resolution measurement of oxygen concentration in oxide materials [J]. Science, 2004, 303(5666): 2001-2004.
[13]	Tanaka T, Matsunaga K, Ikuhara Y, et al. First-principles study on structures and energetics of intrinsic vacancies in SrTiO3 [J]. Physical Review B, 2003, 2002(192): 325-330.
[14]	Keeble D J, Wicklein S, Dittmann R, et al. Identification of A- and B-site cation vacancy defects in perovskite oxide thin films [J]. Physical Review Letters, 2010, 105(22): 3987- 3996.
[15]	Hamid A S, Uedono A, Chikyow T, et al. Vacancy-type de-fects and electronic structure of perovskite-oxide SrTiO3 from positron annihilation [J]. Physica Status Solidi A-Applications and Materials Science, 2006, 203(2): 300- 305.
[16]	Shimoyama K, Kiyohara M, Kubo K, et al. Epitaxial growth of BaTiO3/SrTiO3 structures on SrTiO3 substrate with auto-matic feeding of oxygen from the substrate [J]. Journal of Applied Physics, 2002, 92(8): 4625-4630.
[17]	Uedono A, Kiyohara M, Shimoyama K, et al. Vacancy-type defects in SrTiO3 probed by a monoenergetic positron beam [J]. Journal of Applied Physics, 2004, 91(8): 5307-5312.
[18]	Tuomisto F, Makkonen I. Defect identification in semicon-ductors with positron annihilation: Experiment and theory [J]. Reviews of Modern Physics, 2013, 85(4): 1583-1631.
[19]	Keeble D J, Mackie R A, Egger W, et al. Identification of vacancy defects in a thin film perovskite oxide [J]. Physical Review B, 2010, 81(6): 064102.
[20]	Claus J, Leonhardt M, Maier J. Tracer diffusion and chemical diffusion of oxygen in acceptor doped SrTiO3 [J]. Journal of the Physics and Chemistry of Solids, 2000, 61(8): 1199-1207.
[21]	Helmbold J, Borchardt G, Meyer R, et al. Defects and Sur-face-Induced Effects in Advanced Perovskites [M]. Heidelberg: Springer-Verlag, 2000.
[22]	Jung W C, Tuller H L. Impedance study of SrTi1−xFe xO3−δ, (x=0.05 to 0.80) mixed ionic-electronic conducting model cathode [J]. Solid State Ionics, 2009, 180(11):843-847.
[23]	Moos R, Hardtl K H. Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1 000 ℃ and 1400 ℃ [J]. Journal of the American Ceramic Society, 1997, 80(10): 2549-2562.
[24]	Denk I, Wolfram Münch, Maier J. Partial conductivities in SrTiO3: Bulk polarization experiments, oxygen concentration cell measurements, and defect-chemical modeling [J]. Journal of the American Ceramic Society, 1995, 78(12): 3265-3272.
[25]	Shi T, Chen Y, Guo X. Defect chemistry of alkaline earth metal (Sr/Ba) titanates [J]. Progress in Materials Science, 2016, 80: 77-132.
[26]	Guo X, Fleig J, Maier J. Determination of electronic and ionic partial conductivities of a grain boundary: method and application to acceptor-doped SrTiO3 [J]. Solid State Ionics, 2002, 154(12):563-569.
[27]	De Souza R A, Fleig J, Merkle R, et al. SrTiO3: A model electroceramic [J]. Zeitschrift Für Metallkunde, 2013, 94(3): 218-225.
[28]	Yoo H I, Oh T S, Kwon H S, Electrical conductivity-defect structure correlation of variable-valence and fixed-valence acceptor-doped BaTiO3 in quenched state [J]. Physical Chemistry Chemical Physics, 2009, 11(17): 3115-3126.
[29]	Mangalam R V, Chakrabrati M, Sanyal D, et al. Identifying defects in multiferroic nanocrystalline BaTiO3 by positron annihilation techniques [J]. Journal of Physics Condensed Matter An Institute of Physics Journal, 2009, 21(44): 445902.
[30]	Mackie R A, Singh S, Laverock J, et al. Vacancy defect pos-itron lifetimes in strontium titanate [J]. Physical Review B, 2009, 79(1): 014102.
[31]	Akhtar M J, Akhtar Z U N, Jackson R A, et al. Computer simulation studies of strontium titanate [J]. Journal of the American Ceramic Society, 1995, 78(2): 421-428.
[32]	Singh S, Mcguire S. Cation vacancies in ferroelectric PbTiO3 and Pb(Zr,Ti)O3 [J]. Physical Review B, 2007, 76(14): 4109.
Welcome To WUJNS

HOME | Aim and Scope | Editoral Board | Current Issue | Back Issue | Subscribe | Crosscheck | Polishing | Contact us Copyright © 1997-2020 All right reserved