Welcome To WUJNS
武汉大学学报 英文版 | Wuhan University Journal of Natural Sciences
Wan Fang
CNKI
CSCD
Wuhan University
Latest Article
Effects of Hot Wire Temperature on Properties of GeSi:H Films with High Hydrogen Dilution by Hot-Wire Chemical Vapor Deposition
Time:2019-9-17  
TAI Xin1, LI Xingbing2, ZHEN Huang2, SHEN Honglie3, LI Yufang3, HUANG Haibin1†
1. Institute of Photovoltaics, Nanchang University, Nanchang 330031, Jiangxi, China; 2. China Intellectual Electric Power Technology (Taixing) Co. Ltd., Taixing 225400, Jiangsu, China; 3. Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, Nanjing 211100, Jiangsu, China
Abstract:
GeSi:H films are prepared by hot-wire chemical vapor deposition (CVD) with high hydrogen dilution, DH=98%. Effects of hot wire temperature (Tw) on deposition rate, structural properties and bandgap of GeSi:H films are studied with surface profilemeter, Raman spectroscopy, Fourier transformed infrared spectroscopy, and UV-VIS-NIR spectrophotometer. It is found that the deposition rate (Rd) goes up with increasing of Tw, but increasing rate of Rd declines when Tw≥1 550 ℃. High Tw is beneficial to the formation of Ge-Si, but it has little effect on relative contents of the hydrogen bonds (Ge-H, Si-H, etc.) in the films. In the Tw range of 1 400-1 850 ℃, the maximum bandgap of the GeSi:H films is 1.39 eV at Tw =1 450 ℃ and the band gap decreases with Tw increasing when Tw≥1 450 ℃.
Key words:GeSi:H films; hot-wire chemical vapor deposition (CVD); deposition rate; structural properties; band gap; hot wire temperature
CLC number:O 484.1
References:
[1]	Dominguez M, Rosales P, Torres A, et al. Effects of germane flow rate in electrical properties of a-SiGe:H films for am-bipolar thin-film transistors [J]. Thin Solid Films, 2014, 562(26): 260-263.
[2]	Han S Y, Jeon K S, Cho B, et al. Characteristics of a-SiGe:H thin film transistor infrared photosensor for touch sensing displays [J]. IEEE Journal of Quantum Electronics, 2012, 48(7): 952-959.
[3]	Ducros C, Szambolics H, Emieux F, et al. Back reflectors with periodic gratings for light trapping in a-SiGe:H solar cells [J]. Thin Solid Films, 2016, 620: 10-16.
[4]	Doyle J R, Xu Y, Reedy R, et al. Film stoichiometry and gas dissociation kinetics in hot-wire chemical vapor deposition of a-SiGe:H [J]. Thin Solid Films, 2008, 516(5): 526-528.
[5]	Jadkar S R, Sali J V, Kshirsagar S T, et al. The effect of sub-strate temperature on HW-CVD deposited a-SiGe:H films [J]. Journal of Non-Crystalline Solids, 2002, 299(2): 168- 173.
[6]	Yusoff A R M, Syahrul M N, Henkel K. Retracted article: Hydrogenated nanocrystalline silicon germanium thin films [J]. Pramana, 2007, 69(2): 285-300.
[7]	Xu Y, Mahan A H, Gedvilas L M, et al. Deposition of pho-tosensitive hydrogenated amorphous silicon-germanium films with a tantalum hot wire [J]. Thin Solid Films, 2006, 501(1): 198-201.
[8]	Xu Y, Nelson B P, Gedvilas L M, et al. Improving narrow bandgap a-SiGe:H alloys grown by hot-wire chemical vapor deposition [J]. Thin Solid Films, 2003, 430(1): 197-201.
[9]	Karthik M, Gohil J M, Suresh A K. Probing the thickness and roughness of the functional layer in thin film composite membranes [J]. International Journal of Hydrogen Energy, 2017, 42(42): 26464-26474.
[10]		Xie D, Qiu Z R, Wan L, et al. Spectroscopic ellipsometry and X-ray diffraction studies on Si1-xGex/Si epifilms and su-perlattices [J]. Applied Surface Science, 2017, 421: 748-754.
[11]	Kamesaki K, Masuda A, Izumi A, et al. Proposal of catalytic chemical sputtering method and its application to prepare large grain size poly-Si [J]. Thin Solid Films, 2001, 395(1): 169-172.
[12]	Werf C H M V, Veenendaal P A T T, Veen M K V, et al. The influence of the filament temperature on the structure of hot-wire deposited silicon [J]. Thin Solid Films, 2003, 430(1): 46-49.
[13]		Alonso M I, Winer K. Raman spectra of c-Si1−xGex alloys [J]. Physical Review B Condensed Matter, 1989, 39(14): 10056- 10062.
[14]	Isomura M, Nakahata K, Shima M, et al. Microcrystalline silicon-germanium solar cells for multi-junction structures [J]. Solar Energy Materials & Solar Cells, 2002, 74(1): 519- 524.
[15]	Veenendaal P A T T, Schropp R E I. Processes in silicon deposition by hot-wire chemical vapor deposition[J]. Current Opinion in Solid State & Materials Science, 2002, 6(5): 465-470.
[16]	Soukup R J, Ianno N J, Pribil G, et al. Deposition of high quality amorphous silicon, germanium and silicon- germanium thin films by a hollow cathode reactive sputtering system [J]. Surface & Coatings Technology, 2004, 177: 676-681.
Welcome To WUJNS

HOME | Aim and Scope | Editoral Board | Current Issue | Back Issue | Subscribe | Crosscheck | Polishing | Contact us Copyright © 1997-2020 All right reserved