Latest Article
Semantic Representation of Evidence-Based Medical Guidelines and Its Use Cases
HU Qing1,2,3, HUANG Zhisheng3,
1. College of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China;2. Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan 430065, Hubei, China;3. Department of Computer Science, Vrije University Amsterdam, Amsterdam1081HV, Netherlands
Semantic representation of evidence-based medical guidelines provides the support for the data inter-operability and has been found many applications in the medical domain. In this paper, we describe a semantic representation approach of evidence-based medical guidelines, which is based on the Semantic Web Technology standards. We discuss several use cases of that semantic representation of evidence-based medical guideline, and show that they are potentially useful for medical applications.
Key words:evidence-based medical guidelines; semantic representation; semantic technology;use cases
CLC number:TP 39
[1] Fox J, Johns N, Lyons C, et al. Proforma: A general tech-nology for clinical decision support systems [J]. Computer Methods and Programs in Biomedicine, 1997, 67: 54-59.
[2] Paul A, Johannes A, Hendrikus H, et al. Proforma, ap-proaches for creating computer-interpretable guidelines that facilitate decision support[J]. Artificial Intelligence in Medi-cine, 2004, 31(1): 1-27.
[3] Shahar Y, Miksch S, Johnson P. The asgaard project: A task-specific framework for the application and critiquing of time oriented clinical guidelines [J]. Artificial Intelligence in Medicine, 1998, 14(1-2): 29-51.
[4] Tu S, Musen M. A fexible approach to guideline modeling [C]//Proceeding of 1999 AMIA Symposium. Los Angeles: AMIA Inc, 1990: 420-424.
[5] Peleg M, Boxwala A, Ogunyemi O, et al. Glif3: The evolu-tion of a guideline representation format [C]//Proceedings of AMIA Annual Symposium. Los Angeles: AMIA Inc, 2000: 645-649.
[6] Peleg M, Boxwala A, Tu S, et al. Guideline Interchange Format 3.4[R]. Amsterdam: Intermedcol Laboratory, 2001.
[7] Huang Z S, Ten Teije A, Van Harmelen F, et al. Semantic representation of Evidence-based Medical Guidelines[C]// Knowledge Representation for Health Care, Lecture Notes in Computer Science. Amsterdam: Springer-Verlag, 2014, 8903: 78-94.
[8] NABON. Breast Cancer, Dutch Guideline, Version 2.0[R].   Netherlands: Integral Kankercentrum Netherland, National Borstkanker Overleg Nederland, 2012.
[9] NSRS. Guideline Complex Regional Pain Syndrome Type I[R]. Netherlands:Netherlands Society of Rehabilitation Specialists, 2006.
[10] Ait-Mokhtar S, Bruijn D, Hagege C, et al. Initial Prototype for Relation Identification Between Concepts, D3.2[R].  Amsterdam: EURECA Project, 2013.
[11] Ait-Mokhtar S, Chanod P, Roux C. Robustness beyond shallowness: Incremental deep parsing [J]. Natural Language Engineering, 2002, 8(2): 121-144.
[12] Lindberg D, Humphreys B, McCray A. The united medical language system[J]. Methods of Information in Medicine, 1993, 32(4): 281-291.
[13] Hu Q, Huang Z S, Ten Teije A, et al. Evidence-based medi-cal Guidelines in SemanticCT [C]//Proceedings of 2014 Chinese Semantic Web Conference (CSWS2014). Heidelberg: Springer-Verlag, 2014, 480: 198-212.
[14] Huang Z S, Ten Teije A ,Van Harmelen F. SemanticCT: A semantically enabled clinical trial system [C]// Process Sup-port and Knowledge Representation in Health Care. Am-sterdam: Springer-Verlag, 2013, 8268: 11-25.
[15] Fensel D, Van Harmelen F, Andersson B, et al. Towards LarKC: A platform for web-scale reasoning [C]//Proceedings of the IEEE International Conference on Semantic Comput-ing(ICSC 2008). Piscataway:IEEE Computer Society Press, 2008: 524-529.