Welcome To WUJNS
武汉大学学报 英文版 | Wuhan University Journal of Natural Sciences
Wan Fang
Wuhan University
Latest Article
Folding Behaviors of Purine Riboswitch Aptamers
GONG Sha1, WANG Yanli2, WANG Zhen2, SUN Yuying2, ZHANG Wenbing2†
1. Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, Hubei, China; 2. School of Physics and Technology, Wuhan University, Wuhan 430072, Hubei, China
 Most riboswitches are characterized by two components, an aptamer domain that folds into a unique ligand binding pocket to interact with the ligand, and an expression platform that converts folding changes in the aptamer into changes in gene expression. Using the recently developed systematic helix-based computational method, we theoretically studied the refolding and co-transcriptional folding behaviors of the purine riboswitch aptamers from Bacillus subtilis xpt-pbuX guanine riboswitch and Vibrio vulnificus add adenine riboswitch. Despite several intermediate structures persisting a short time during the transcription, helices P2, P3 and P1 fold in turn for both aptamers. Although some misfolded structures are observed during the refolding process, the RNAs can fold into the ligand binding pocket structure containing helices P2, P3 and P1 within a few seconds, suggesting the aptamer domains are highly evolved. The purine riboswitch aptamers can quickly fold into the ligand binding pocket structure even at a high transcription speed, possibly because formation of this structure is the necessary prerequisite for the riboswitch to bind its ligand and then regulate relevant gene expression.
Key words:purine riboswitch; gene regulation; aptamer; co-transcriptional folding
CLC number:O 469; Q 61
[1]	Mellin J R, Koutero M, Dar D, et al. Sequestration of a two-component response regulator by a ri-boswitch-regulated noncoding RNA [J]. Science, 2014, 345(6199): 940-943.
[2]	Sudarsan N, Lee E R, Weinberg Z, et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP [J]. Science, 2008, 321(5887): 411-413.
[3]	Vitreschak A G, Rodionov D A, Mironov A A, et al. Ri-boswitches: The oldest mechanism for the regulation of gene expression [J]. Trends in Genetics, 2004, 20(1): 44-50.
[4]	Mandal M, Boese B, Barrick J E, et al. Riboswitches control fundamental biochemical pathways in bacillus subtilis and other bacteria [J]. Cell, 2003, 113(5): 577-586.
[5]	Winkler W C. Riboswitches and the role of noncoding RNAs in bacterial metabolic control [J]. Current Opinion in Chemical Biology, 2005, 9(6): 594-602.
[6]	Breaker R R. Riboswitches and the RNA world [J]. Cold Spring Harbor Perspectives in Biology, 2012, 4(2): 1-15.
[7]	Batey R T, Gilbert S D, Montange R K. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine [J]. Nature, 2004, 432(7015): 411-415.
[8]	Ottink O M, Rampersad S M, Tessari M, et al. Ligand-  induced folding of the guanine-sensing riboswitch is con-trolled by a combined predetermined induced fit mecha-nism [J]. RNA, 2007, 13(12): 2202-2212.
[9]	Mandal M, Lee M, Barrick J E, et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression [J]. Science, 2004, 306(5694): 275-279.
[10]	Huang L, Serganov A, Patel D J. Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch [J]. Molecular Cell, 2010, 40(4): 774- 786.
[11]	Smith A M, Fuchs R T, Grundy F J, et al. The SAM-    responsive S (MK) box is a reversible riboswitch [J]. Molecular Microbiology, 2010, 78(6): 1393-1402.
[12]	Tomšič J, McDaniel B A, Grundy F J, et al. Natural variability in S-adenosylmethionine (SAM)-dependent ri-boswitches: S-box elements in bacillus subtilis exhibit differential sensitivity to SAM in vivo and in vitro [J]. Journal of Bacteriology, 2008, 190(3): 823-833.
[13]	Gong S, Wang Y, Wang Z, et al. Reversible-switch mecha-nism of the SAM-Ⅲ riboswitch [J]. The Journal of Physical Chemistry B, 2016, 120(48): 12305-12311.
[14]	Cheah M T, Wachter A, Sudarsan N, et al. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches [J]. Nature, 2007, 447(7143): 497-500.
[15]    Wachter A, Tunc-Ozdemir M, Grove B C, et al. Riboswitch control of gene expression in plants by splicing and alternative 3 end processing of mRNAs [J]. The Plant Cell, 2007, 19(11): 3437-3450.
[16]	Sudarsan N, Cohen-Chalamish S, Nakamura S, et al. Thia-mine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine [J]. Chemistry & Biology, 2005, 12(12): 1325-1335.
[17]	Liberman J A, Wedekind J E. Riboswitch structure in the ligand-free state [J]. Wiley Interdisciplinary Reviews: RNA, 2012, 3(3): 369-384.
[18]	Barrick J E, Breaker R R. The distributions, mechanisms, and structures of metabolite-binding riboswitches [J]. Genome Biology, 2007, 8(11): R239.
[19]	Vicens Q, Mondragón E, Batey R T. Molecular sensing by the aptamer domain of the FMN riboswitch: A general model for ligand binding by conformational selection [J]. Nucleic Acids Research, 2011, 39(19): 8586-8598.
[20]	Wickiser J K, Winkler W C, Breaker R R, et al. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch [J]. Molecular Cell, 2005, 18(1): 49-60.
[21]	Winkler W C, Cohen-Chalamish S, Breaker R R. An mRNA structure that controls gene expression by binding FMN [J]. Proceedings of the National Academy of Sciences, 2002, 99(25): 15908-15913.
[22]	Furukawa K, Ramesh A, Zhou Z, et al. Bacterial riboswitches cooperatively bind Ni2+ or Co2+ ions and control expression of heavy metal transporters [J]. Molecular Cell, 2015, 57(6): 1088-1098.
[23]	Garst A D, Batey R T. A switch in time: Detailing the life of a riboswitch [J]. Biochimica et Biophysica Acta, 2009, 1789(9-10): 584-591.
[24]	Serganov A, Patel D J. Metabolite recognition principles and molecular mechanisms underlying riboswitch function [J]. Annual Review of Biophysics, 2012, 41(1): 343-370.
[25]	Montange R K, Mondragón E, Tyne D, et al. Discrimination between closely related cellular metabolites by the SAM-Ⅰ riboswitch [J]. Journal of Molecular Biology, 2010, 396(3): 761-772.
[26]	Serganov A, Yuan Y, Pikovskaya O, et al. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs [J]. Chemistry & Biology, 2004, 11(12): 1729-1741.
[27]	Gilbert S D, Stoddard C D, Wise S J, et al. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain [J]. Journal of Molecular Biology, 2006, 359(3): 754-768.
[28]	Serganov A, Nudler E. A decade of riboswitches [J]. Cell, 2013, 152(1-2): 17-24.
[29]	Breaker R R. Prospects for riboswitch discovery and analy-sis [J]. Molecular Cell, 2011, 43(6): 867-879.
[30]		Chen J, Gottesman S. Riboswitch regulates RNA [J]. Science, 2014, 345(6199): 876-877.
[31]	Gong S, Wang Y, Zhang W. Kinetic regulation mechanism of pbuE riboswitch [J]. The Journal of Chemical Physics, 2015, 142(1): 15103.
[32]	Gong S, Wang Y, Zhang W. The regulation mechanism of yitJ and metF riboswitches [J]. The Journal of Chemical Physics, 2015, 143(4): 45103.
[33]	Lemay J F, Lafontaine D A. Core requirements of the ade-nine riboswitch aptamer for ligand binding [J]. RNA, 2007, 13(3): 339-350.
[34]	Lemay J F, Desnoyers G, Blouin S, et al. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms [J]. PLoS Genetics, 2011, 7(1): e1001278.
[35]	Lemay J F, Penedo J C, Tremblay R, et al. Folding of the adenine riboswitch [J]. Chemistry & Biology, 2006, 13(8): 857-868.
[36]	Neupane K, Yu H, Foster D A N, et al. Single-molecule force spectroscopy of the add adenine riboswitch relates folding to regulatory mechanism [J]. Nucleic Acids Research, 2011, 39(17): 7677-7687.
[37]	Noeske J, Buck J, Furtig B, et al. Interplay of “induced fit” and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch [J]. Nu-cleic Acids Research, 2007, 35(2): 572-583.
[38]	Rieder R, Lang K, Graber D, et al. Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control [J]. ChemBioChem, 2007, 8(8): 896-902.
[39]	Frieda K L, Block S M. Direct observation of cotranscrip-tional folding in an adenine riboswitch [J]. Science, 2012, 338(6105): 397-400.
[40]	Zhao P, Zhang W, Chen S J. Cotranscriptional folding kinetics of ribonucleic acid secondary structures [J]. The Journal of Chemical Physics, 2011, 135(24): 245101.
[41]	Zhao P, Zhang W B, Chen S J. Predicting secondary structural folding kinetics for nucleic acids [J]. Biophysical Journal, 2010, 98(8): 1617-1625.
[42]	Chen J, Gong S, Wang Y L, et al. Kinetic partitioning mechanism of HDV ribozyme folding [J]. The Journal of Chemical Physics, 2014, 140(2): 25102.
[43]	Chen J, Zhang W. Kinetic analysis of the effects of target structure on siRNA efficiency [J]. The Journal of Chemical Physics, 2012, 137(22): 225102.
[44]	Zou Y J, Wang Y L, Gong S, et al. Folding kinetics of HDV ribozyme with C13A:G82U and A16U:U79A mutations [J]. Wuhan University Journal of Natural Sciences, 2015, 20(5): 421-429.
[45]	Zhang W, Chen S J. Exploring the complex folding kinetics of RNA hairpins: Ⅱ. Effect of sequence, length, and mis-folded states [J]. Biophysical Journal, 2006, 90(3): 778-787.
[46]	Zhang W, Chen S J. Exploring the complex folding kinetics of RNA hairpins: Ⅰ. General folding kinetics analysis [J]. Biophysical Journal, 2006, 90(3): 765-777.
[47]	Mathews D H, Sabina J, Zuker M, et al. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure [J]. Journal of Molecular Biology, 1999, 288(5): 911-940.
[48]	Xia T, SantaLucia J, Burkard M E, et al. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs [J]. Biochemistry, 1998, 37(42):14719-14735.
[49]	Gong Z, Zhao Y, Chen C, et al. Role of ligand binding in structural organization of add A-riboswitch aptamer: a mo-lecular dynamics simulation [J]. Journal of Biomolecular Structure and Dynamics, 2011, 29(2): 403-416.
[50]	Prychyna O, Dahabieh M S, Chao J, et al. Sequence- de-pendent folding and unfolding of ligand-bound purine ri-boswitches [J]. Biopolymers, 2009, 91(11): 953-965.
[51]	Noeske J, Schwalbe H, Wöhnert J. Metal-ion binding and metal-ion induced folding of the adenine-sensing ri-boswitch aptamer domain [J]. Nucleic Acids Research, 2007, 35(15): 5262-5273.
[52]	Stoddard C D, Gilbert S D, Batey R T. Ligand-dependent folding of the three-way junction in the purine riboswitch [J]. RNA, 2008, 14(4): 675-684.
[53]	Greenleaf W J, Frieda K L, Foster D A N, et al. Direct ob-servation of hierarchical folding in single riboswitch ap-tamers [J]. Science, 2008, 319(5863): 630-633.
[54]	Tan Z J, Chen S J. Salt contribution to RNA tertiary structure folding stability [J]. Biophysical Journal, 2011, 101(1): 176-187.
[55]	Tan Z J, Chen S J. Predicting ion binding properties for RNA tertiary structures [J]. Biophysical Journal, 2010, 99(5): 1565-1576.
Welcome To WUJNS

HOME | Aim and Scope | Editoral Board | Current Issue | Back Issue | Subscribe | Crosscheck | Polishing | Contact us Copyright © 1997-2018 All right reserved